LPQP for MAP: Putting LP Solvers to Better Use

نویسندگان

  • Patrick Pletscher
  • Sharon Wulff
چکیده

MAP inference for general energy functions remains a challenging problem. While most efforts are channeled towards improving the linear programming (LP) based relaxation, this work is motivated by the quadratic programming (QP) relaxation. We propose a novel MAP relaxation that penalizes the Kullback-Leibler divergence between the LP pairwise auxiliary variables, and QP equivalent terms given by the product of the unaries. We develop two efficient algorithms based on variants of this relaxation. The algorithms minimize the non-convex objective using belief propagation and dual decomposition as building blocks. Experiments on synthetic and real-world data show that the solutions returned by our algorithms substantially improve over the LP relaxation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations

We present a novel message passing algorithm for approximating the MAP problem in graphical models. The algorithm is similar in structure to max-product but unlike max-product it always converges, and can be proven to find the exact MAP solution in various settings. The algorithm is derived via block coordinate descent in a dual of the LP relaxation of MAP, but does not require any tunable para...

متن کامل

Train and Test Tightness of LP Relaxations in Structured Prediction

Structured prediction is used in areas such as computer vision and natural language processing to predict structured outputs such as segmentations or parse trees. In these settings, prediction is performed by MAP inference or, equivalently, by solving an integer linear program. Because of the complex scoring functions required to obtain accurate predictions, both learning and inference typicall...

متن کامل

LP, Weak Constraints, and P-log

LP is a recently introduced formalism that extends answer set programs by adopting the log-linear weight scheme of Markov Logic. This paper investigates the relationships between LP and two other extensions of answer set programs: weak constraints to express a quantitative preference among answer sets, and P-log to incorporate probabilistic uncertainty. We present a translation of LP into progr...

متن کامل

Linear Programming Relaxations and Belief Propagation - An Empirical Study

The problem of finding the most probable (MAP) configuration in graphical models comes up in a wide range of applications. In a general graphical model this problem is NP hard, but various approximate algorithms have been developed. Linear programming (LP) relaxations are a standard method in computer science for approximating combinatorial problems and have been used for finding the most proba...

متن کامل

Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins

While finding the exact solution for the MAP inference problem is intractable for many real-world tasks, MAP LP relaxations have been shown to be very effective in practice. However, the most efficient methods that perform block coordinate descent can get stuck in sub-optimal points as they are not globally convergent. In this work we propose to augment these algorithms with an -descent approac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1206.4681  شماره 

صفحات  -

تاریخ انتشار 2012